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Abstract 

The relationship of isospectral points to symmetrically equivalent points in a graph is 
described. Many isospectral points are related to symmetrically equivalent vertices v/a an 
equivalence-preserving perturbation. A graph having isospectral edges is examined for 
clues to assist in finding other such graphs. Two families are found in this manner. Appli- 
cation of equivalence-preserving perturbations to edges that are initially symmetrically 
equivalent leads to an unlimited number of families of graphs, many with more than one 
pair of isospectral edges. 

1. Introduction 

It has been recognized for many years that nonisomorphic graphs can be iso- 
spectral [1,2], i.e. can have identical characteristic polynomial and roots (or eigen- 
values). Frequently cited examples are la,b and 2a,b. 
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Graphs la  and b are isospectral and can be viewed as resulting from sequential sub- 
stitution of a two-vertex fragment at the solid circles on graph le. Similarly, the 
isospectral graphs 2a and 2b may be derived from sequential substitution of a single 
vertex at the solid circles in graph 2c. Because of this, these solid-circle vertices are 
referred to as isospectral points. Generally, reversed sequential substitution of two 
distinct fragments at isospectral points generates isospectral graphs [2]. Thus, for 
example, 3a and b are isospectral, where A and B are any two graphs. 

3a 3b 

Examples of isospectral graphs that are not related through sequential substi- 
tution at isospectral points of a subgraph are known. 4a,b is one such pair. 

4a 4b 

Studies of the nature of isospectral points [2-6] have led to the recognition that 
these points are equivalent in the mathematical sense of having coefficients of the same 
absolute value in each nondegenerate eigenvector (as well as in appropriately mixed 
degenerate eigenvectors), which is to say that these points behave in mathematical 
relations just as do points that are equivalent by symmetry. In both circumstances, 
perturbing the two sites in one way and then in the reversed way produces identical 
changes in energy, hence isospectral graphs. If the points are symmetrically equivalent, 
the two restflting graphs are identical, hence trivially isospectral. If the points are 
isospectral, the resulting graphs are different (nonisomorphic). 

It has long been realized that adding a graph is not the only kind of change 
possible at isospectral points [2,3]. One can change the weight of such a vertex or of 
the edges connecting it to the rest of the graph. 

In many cases, isospectral points are related to symmetrically equivalent points 
through an equivalence-preserving perturbation OEPP) of a continuous nature. For 
example, the isospectral points in 5a remain equivalent for any value of the weight 
factor w at the indicated edges. 
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When w equals zero, 5a becomes 5b, for which the isospectral points have become 
symmetrically equivalent. Thus, vertex 4 (or 8) of 5a is a site where an EPP can occur. 
Such sites have been previously identified as unrestricted substitution sites. Hemdon 
and Ellzey [3] point out that such sites have identical atom-atom polarizability indices 
with the two isospectral points. Hence, any perturbation there affects the isospectral 
points equally, preserving their equivalence. 

The situation, then, is that when 5b is identically perturbed at points a' and c by 
adding a common vertex, the equivalence of a with a' and also of c with c' is lost, but 
that of b with b '  is preserved. Detailed perturbational analysis [5] has led to a general 
recipe for constructing additional graphs with isospectral points. 

The above example shows how isospectral points may become symmetrical 
points in a smaller graph through an EPP at an unlimited substitution site. They may 
also become symmetrical through an EPP to a larger graph. Hemdon and Ellzey [3] 
have shown that certain larger graphs having threefold symmetry contain subgraphs 
with isospectral points related by the symmetry of the parent. Building upon their ideas 
leads to 6 a - 6 k  as an example of the graphs related by various EPPs taken in different 
orders. 6a has two sets of vertices that are related by the C 3 operation, shown as filled 
and empty circles. This symmetry equivalence is not affected by removal of the central 
vertex (marked by a square), which means that we can remove this vertex initially, to 
give 6b. Surprisingly, we can remove it later (after other changes) and it still has no 
effect on the symmetry equivalence of these two sets of vertices. A perturbation at a 
solid-circle vertex affects equally the other two solid vertices by symmetry [3], so 
substitution at or removal of a solid circle (to give 6c) is an EPP. Interestingly, the 
hollow-circle sites symmetrically located about the EPP site (equal number of perimeter 
bonds on either side) undergo identical changes because of the symmetries of the 
eigenvectors, so their equivalence is preserved also. Not so the more distant hollow 
circle. It loses its equivalence to the others but, remarkably, becomes itself an EPP site 
for both sets of isospectral points. We mark it with a shaded circle. We have so far 
identified two EPP sites in 6c, marked with a square and a shaded circle. There are two 
others that occur in groups. They are the isospectral pairs themselves [3,5]. Each pair 
is an EPP pair for the other pair of isospectral points. Thus, removal of the hollow circle 
pair from 6e gives 6f, in which the solid circles remain equivalent. The result 
of all this is that there are five EPP operations that can be applied to 6a in any 
order. Some orders are such that the symmetric relations between points are 
always retained in an obvious way, e.g. 6a ~ 6b --~ 6d ~ 6h. Others produce 
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graphs having isospectral points, as in 6c, 6e, and 6f. (Note that 6f is lc,  with 
a vertex substituted at the unlimited substitution site.) 

6a is unusual in the number of EPP operations it permits. Not all threefold 
symmetric graphs are so rich. For example, 7 and 8 undergo only the first step (removal 
of a solid circle), to yield one pair of isospectral points and no other EPP sites. On the 
other hand, 9 behaves like 6a. Detailed perturbational analysis similar to that in ref. [5] 
shows why this is so. 

It is natural to ask whether all isospectral points are related to symmetrical points 
through EPP operations. Certain cases exist where we have not seen a relation to 
symmetry, for example 2c and 10. However, failure to find such connections is not 
proof that they do not exist. 
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The current understanding, then, is that isospectral graphs are somet imes related 
through sequential perturbations at isospectral points in a common graph, and iso- 
spectral points are somet imes  related to symmetrically equivalent points via an 
equivalence-preserving perturbation. 

2. lsospectral edges 

It has been noticed [7] that isospectral graphs can be produced by sequential 
alteration of edge weights, as in l la,b.  The symbolic representation of the relation 
between l la  and b is given by l lc .  Here, two edges that are not equivalent by symmetry 

l l a  l l b  l l c  

nevertheless behave as if they are equivalent. We refer to them as isospectral edges [8] 
and indicate them with dotted lines. 

A mathematical requirement for isospectral edges is that products of eigenvector 
coefficients at vertices attached by such edges be equal in every eigenvector for the 
graph (using proper zeroth-order combinations in degenerate cases). While this is a 
necessary requirement, it is not sufficient. Thus, 12 is a graph having equal products for 

12 

coefficients between vertices 1, 2 and 4, 5. Furthermore, vertex 3 is an EPP for these 
edges. However, the edges are not isospectral because changing wl. z affects the eigen- 
values differently than equally changing w4. 5. 
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Isospectral edges permit the creation of isospectral polymers by creating links 
between such special vertices in separate, identical graphs. Joining one vertex of an 
isospectral edge to the other vertex in a second monomer and also joining the other pair 
of vertices creates a dimer graph that must be isospectral with that produced by the same 
procedure using the other isospectral edge. In this way, 13a,b can be made from 11. The 
process can be continued to trimers, etc. 

13a 13b 

Graph 11 was the only one known by us to contain isospectral edges, and we 
wished to determine whether more cases exist and, if so, seek rules for finding them. 
One can take a "brute force" approach, seeking the proper coefficient product relation 
in randomly selected graphs. We have taken a more directed approach, checking 
promising generalizations of the situation represented by 11. 

One observation comes from setting w~ and w 2 sequentially equal to zero in 11. 
This gives 14a and 14b, which are isospectral graph pairs. This shows that 11 can be 
formed in two ways by joining collectively isospectral pairs of graphs through edges 

• ( 

14a 14b 

that are isospectral. In one case we join two even-altemant graphs, in the other two odd- 
altemants. This odd-odd and even-even observation is helpful. A pair of odd-altemant 
graphs must have at least two null eigenvalues. This means that the pair of even- 
altemants must too. However, even-altemants with null eigenvalues are not common. 
(When an even-alternant has null eigenvalues, it will have an even number of them.) So, 
one is led to examining pairs of even-alternants where one member of the pair (e.g. 15, 
16, 17) has a degenerate null eigenlevel. 

15 16 17 
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Other strategies suggest themselves. 14a corresponds to attachment of a single 
vertex, which has a nonzero coefficient in the eigenvector for the null eigenvalue, to a 
site in the other fragment which has a zero coefficient in the eigenvector for the null 
eigenvalue. Again, the edge being created is one of the isospectral edges. 

A third approach was suggested to us by the observation that the pair of  null 
eigenvalues do not change value when the fragments are joined together. That is, while 
most eigenvalues change with changing the edge weight, the null values do not. Thus, 
l l a , b  have two null eigenvalues regardless of the values of w 1 and w 2. This suggests 
bringing together odd-altemant fragments so that the eigenvectors of the null eigen- 
values will not interact, i.e. connecting a zero-coefficient vertex in one fragment with 
a nonzero-coefficient vertex in the other fragment. This is consistent with 14a, but it 
permits, in addition, 18. In this case, the new edge c is not one of the isospectral edges. 

18 

These clues have led us to two classes of graphs with isospectral edges as well 
as two isolated examples. One class (fig. 1) may be regarded as resulting from addition 
of a vertex to the penultimate point of an n-membered, linear graph, where n is odd. We 

l x 5  

~ J 
I x 7  

l x 9  

Fig. 1. The first three members of the 1 x n family. Dotted edges 
are isospectral, Arrows indicate edges used to link subgraphs. 

call this a 1 x n process. The isospectral edges are the new edge and the edge connecting 
the central vertex of the n-chain to the vertex away from the end being altered. 
Graph 11 is the result of  the 1 x 5 process and is the smallest member of this family. 
Connecting the lone vertex to other vertices of the n-chain does not produce analogous 
families of  graphs with isospectral edges. The second class arises by application of the 
approach indicated in 18. The first few members are shown in fig. 2. The graphs being 
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3 x 3 (1,2') 

5 x 5 (1,2') 

5 x 5 ( 2 , 3 ' )  

7 x 7 (1,2') 

7 x 7 (2,3') 

7 x 7 (3,4') 

Fig. 2. The first three sets of n x n graphs containing isospecn'al 
edges. Dotted edges are isospectral. Arrows indicate edges used to 
link subgraphs. 

joined in this method are identical, so the process is called n x n. The vertices being 
joined are associated with different ends of equivalent edges in the two subgraphs. Thus, 
in 7 × 7, an end vertex in one graph links to the penultimate vertex in the other graph. 
The isospectral edges in the resulting graph are the ones that connect these vertices in 
the subgraphs. Here, we find that all appropriate vertex linkages lead to isospectral 
edges. Thus, 7 x 7 produces three graphs with isospectral edges, with can be labeled 
1-2' ,  2-3 ' ,  and 3-4' .  

Two graphs which do not appear to be members of families are 19 and 20. 

19 2O 

The edges indicated by arrows in fig. 2 are evidently EPP edges since the 
isospectral edges are identical in the separated subgraphs and equivalent when the 
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subgraphs are joined. Thus, we can view the isospectral edges in the n × n family as 
being equivalent because of preserved "symmetry equivalence" (actually, a preserved 
"identity equivalence"). An EPP edge is not evident in the 1 x n family (except for 
1 × 5, which is 3 × 3). 

Even though the 1 x n family and 19 and 20 show no resolution to the identical 
subgraphs via edge removal, there may be an EPP relation to symmetry in each case to 
a graph with more edges. We approach this similarly to the way Hemdon and Ellzey did 
for isospectral points [3], through the use of symmetry equivalence. Consider graph 21, 
where dashed lines indicate optional edges, and A,B are any graph fragments. If  the 

Wa=O 

21 22 

weight of edge a is set equal to zero, graph 22 results. Edges b and d become the 
isospectral pair shown. Edge c becomes an EPP edge, as is most easily seen by 
imagioing its weight to go to zero. If isospectral edges b and d are sequentially given 
zero weight, we obtain the isospectral graphs 23a,b. If the optional edges are not present, 

23a 23b 

and if A and B are straight-chain graphs, 22 generates all the n x n cases. For example, 
i fA is one vertex and B is two, 22 becomes 5 x 5(2,3'). I fA  has four vertices and B 
has two, and the optional edges connecting A and B are used as shown in 24, we obtain 

sa~e 

as 

24 24 

rings with isospectral edges. Clearly, 22 cannot give us the family of fig. 1 or graphs 
19 or 20 because it must always produce isospectral edges with one intervening edge. 
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The six-membered ring with substituents offers more possibilities (25 --> 26). 
Here, we obtain two sets of isospectral edges, one set with a single intervening edge, 
the other set with three intervening edges. Edge c is not an EPP edge in this case. The 

. . - °  

-,2 I 

25 26 

simplest case results when A is a vertex, B is nothing, and the optional bonds are absent. 
This gives 27a,b (the same graph with the different isospectral edges indicated). An 

27a 27b 

unlimited number of graphs with isospectral edges separated by three edges can be 
generated from 26, but none of them correspond to 19, 20 or fig. 1. 

On can continue this approach with larger cycles, as in 28. Here, there are three 
pairs of isospectral edges. 

28 

Formation of isospectral edges is prevented in cycles where connections exist 
between the various subsections, as in 29-32. 

29 30 31 32 
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3. Conclusions 

Isospectral points are similar to symmetrical points in their mathematical proper- 
ties. In many cases, they can be shown to become symmetrical by a transformation (the 
"growing in" or "fading out" of one or more vertices) which affects both points 
identically and hence preserves their equivalence. Isospectral edges are similar in this 
respect. Here, we have shown that symmetrical edges can become asymmetrical, with- 
out becoming inequivalent, through the growing in or fading out of another edge. (The 
growing or fading edge is the analogue of the unrestricted substitution site, and might 
be called an unrestricted-order edge.) Use of this transformation allows the generation 
of an unlimited number of families of graphs having one or more pairs of isospectral 
edges. 
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